Copied to
clipboard

G = C42.30Q8order 128 = 27

30th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.30Q8, C4⋊C810C4, C41(C4.Q8), C4⋊C4.16Q8, C4.36(C4×Q8), C4⋊C4.218D4, C4.144(C4×D4), C4.17(C4⋊Q8), C42.151(C2×C4), C2.4(Q8⋊Q8), C2.4(D42Q8), C2.4(C4⋊SD16), (C2×C4).104SD16, C23.793(C2×D4), (C22×C4).760D4, C429C4.10C2, C2.4(D4.D4), C4.16(C42.C2), C22.69(C2×SD16), C22.92(C8⋊C22), C22.4Q16.42C2, (C2×C42).311C22, (C22×C8).315C22, C22.80(C22⋊Q8), C22.139(C4⋊D4), (C22×C4).1397C23, C22.81(C8.C22), C2.14(M4(2)⋊C4), C2.15(C23.65C23), (C4×C4⋊C4).23C2, (C2×C4⋊C8).47C2, C2.10(C2×C4.Q8), (C2×C8).114(C2×C4), (C2×C4).209(C2×Q8), (C2×C4.Q8).20C2, (C2×C4).136(C4⋊C4), (C2×C4).1014(C2×D4), (C2×C4⋊C4).79C22, C22.115(C2×C4⋊C4), (C2×C4).867(C4○D4), (C2×C4).553(C22×C4), SmallGroup(128,680)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.30Q8
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C42.30Q8
C1C2C2×C4 — C42.30Q8
C1C23C2×C42 — C42.30Q8
C1C2C2C22×C4 — C42.30Q8

Generators and relations for C42.30Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=b2c2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=bc-1 >

Subgroups: 236 in 128 conjugacy classes, 72 normal (36 characteristic)
C1, C2, C4, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2.C42, C4⋊C8, C4.Q8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.4Q16, C4×C4⋊C4, C429C4, C2×C4⋊C8, C2×C4.Q8, C42.30Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, SD16, C22×C4, C2×D4, C2×Q8, C4○D4, C4.Q8, C2×C4⋊C4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C42.C2, C4⋊Q8, C2×SD16, C8⋊C22, C8.C22, C23.65C23, C2×C4.Q8, M4(2)⋊C4, C4⋊SD16, D4.D4, Q8⋊Q8, D42Q8, C42.30Q8

Smallest permutation representation of C42.30Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 39 11 13)(2 40 12 14)(3 37 9 15)(4 38 10 16)(5 19 118 106)(6 20 119 107)(7 17 120 108)(8 18 117 105)(21 122 110 126)(22 123 111 127)(23 124 112 128)(24 121 109 125)(25 31 51 33)(26 32 52 34)(27 29 49 35)(28 30 50 36)(41 57 69 83)(42 58 70 84)(43 59 71 81)(44 60 72 82)(45 53 67 61)(46 54 68 62)(47 55 65 63)(48 56 66 64)(73 85 101 115)(74 86 102 116)(75 87 103 113)(76 88 104 114)(77 89 99 93)(78 90 100 94)(79 91 97 95)(80 92 98 96)
(1 83 51 61)(2 84 52 62)(3 81 49 63)(4 82 50 64)(5 78 126 74)(6 79 127 75)(7 80 128 76)(8 77 125 73)(9 59 27 55)(10 60 28 56)(11 57 25 53)(12 58 26 54)(13 41 31 45)(14 42 32 46)(15 43 29 47)(16 44 30 48)(17 96 23 114)(18 93 24 115)(19 94 21 116)(20 95 22 113)(33 67 39 69)(34 68 40 70)(35 65 37 71)(36 66 38 72)(85 105 89 109)(86 106 90 110)(87 107 91 111)(88 108 92 112)(97 123 103 119)(98 124 104 120)(99 121 101 117)(100 122 102 118)
(1 87 25 95)(2 86 26 94)(3 85 27 93)(4 88 28 96)(5 84 122 54)(6 83 123 53)(7 82 124 56)(8 81 121 55)(9 115 49 89)(10 114 50 92)(11 113 51 91)(12 116 52 90)(13 103 33 79)(14 102 34 78)(15 101 35 77)(16 104 36 80)(17 72 112 48)(18 71 109 47)(19 70 110 46)(20 69 111 45)(21 68 106 42)(22 67 107 41)(23 66 108 44)(24 65 105 43)(29 99 37 73)(30 98 38 76)(31 97 39 75)(32 100 40 74)(57 127 61 119)(58 126 62 118)(59 125 63 117)(60 128 64 120)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,39,11,13)(2,40,12,14)(3,37,9,15)(4,38,10,16)(5,19,118,106)(6,20,119,107)(7,17,120,108)(8,18,117,105)(21,122,110,126)(22,123,111,127)(23,124,112,128)(24,121,109,125)(25,31,51,33)(26,32,52,34)(27,29,49,35)(28,30,50,36)(41,57,69,83)(42,58,70,84)(43,59,71,81)(44,60,72,82)(45,53,67,61)(46,54,68,62)(47,55,65,63)(48,56,66,64)(73,85,101,115)(74,86,102,116)(75,87,103,113)(76,88,104,114)(77,89,99,93)(78,90,100,94)(79,91,97,95)(80,92,98,96), (1,83,51,61)(2,84,52,62)(3,81,49,63)(4,82,50,64)(5,78,126,74)(6,79,127,75)(7,80,128,76)(8,77,125,73)(9,59,27,55)(10,60,28,56)(11,57,25,53)(12,58,26,54)(13,41,31,45)(14,42,32,46)(15,43,29,47)(16,44,30,48)(17,96,23,114)(18,93,24,115)(19,94,21,116)(20,95,22,113)(33,67,39,69)(34,68,40,70)(35,65,37,71)(36,66,38,72)(85,105,89,109)(86,106,90,110)(87,107,91,111)(88,108,92,112)(97,123,103,119)(98,124,104,120)(99,121,101,117)(100,122,102,118), (1,87,25,95)(2,86,26,94)(3,85,27,93)(4,88,28,96)(5,84,122,54)(6,83,123,53)(7,82,124,56)(8,81,121,55)(9,115,49,89)(10,114,50,92)(11,113,51,91)(12,116,52,90)(13,103,33,79)(14,102,34,78)(15,101,35,77)(16,104,36,80)(17,72,112,48)(18,71,109,47)(19,70,110,46)(20,69,111,45)(21,68,106,42)(22,67,107,41)(23,66,108,44)(24,65,105,43)(29,99,37,73)(30,98,38,76)(31,97,39,75)(32,100,40,74)(57,127,61,119)(58,126,62,118)(59,125,63,117)(60,128,64,120)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,39,11,13)(2,40,12,14)(3,37,9,15)(4,38,10,16)(5,19,118,106)(6,20,119,107)(7,17,120,108)(8,18,117,105)(21,122,110,126)(22,123,111,127)(23,124,112,128)(24,121,109,125)(25,31,51,33)(26,32,52,34)(27,29,49,35)(28,30,50,36)(41,57,69,83)(42,58,70,84)(43,59,71,81)(44,60,72,82)(45,53,67,61)(46,54,68,62)(47,55,65,63)(48,56,66,64)(73,85,101,115)(74,86,102,116)(75,87,103,113)(76,88,104,114)(77,89,99,93)(78,90,100,94)(79,91,97,95)(80,92,98,96), (1,83,51,61)(2,84,52,62)(3,81,49,63)(4,82,50,64)(5,78,126,74)(6,79,127,75)(7,80,128,76)(8,77,125,73)(9,59,27,55)(10,60,28,56)(11,57,25,53)(12,58,26,54)(13,41,31,45)(14,42,32,46)(15,43,29,47)(16,44,30,48)(17,96,23,114)(18,93,24,115)(19,94,21,116)(20,95,22,113)(33,67,39,69)(34,68,40,70)(35,65,37,71)(36,66,38,72)(85,105,89,109)(86,106,90,110)(87,107,91,111)(88,108,92,112)(97,123,103,119)(98,124,104,120)(99,121,101,117)(100,122,102,118), (1,87,25,95)(2,86,26,94)(3,85,27,93)(4,88,28,96)(5,84,122,54)(6,83,123,53)(7,82,124,56)(8,81,121,55)(9,115,49,89)(10,114,50,92)(11,113,51,91)(12,116,52,90)(13,103,33,79)(14,102,34,78)(15,101,35,77)(16,104,36,80)(17,72,112,48)(18,71,109,47)(19,70,110,46)(20,69,111,45)(21,68,106,42)(22,67,107,41)(23,66,108,44)(24,65,105,43)(29,99,37,73)(30,98,38,76)(31,97,39,75)(32,100,40,74)(57,127,61,119)(58,126,62,118)(59,125,63,117)(60,128,64,120) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,39,11,13),(2,40,12,14),(3,37,9,15),(4,38,10,16),(5,19,118,106),(6,20,119,107),(7,17,120,108),(8,18,117,105),(21,122,110,126),(22,123,111,127),(23,124,112,128),(24,121,109,125),(25,31,51,33),(26,32,52,34),(27,29,49,35),(28,30,50,36),(41,57,69,83),(42,58,70,84),(43,59,71,81),(44,60,72,82),(45,53,67,61),(46,54,68,62),(47,55,65,63),(48,56,66,64),(73,85,101,115),(74,86,102,116),(75,87,103,113),(76,88,104,114),(77,89,99,93),(78,90,100,94),(79,91,97,95),(80,92,98,96)], [(1,83,51,61),(2,84,52,62),(3,81,49,63),(4,82,50,64),(5,78,126,74),(6,79,127,75),(7,80,128,76),(8,77,125,73),(9,59,27,55),(10,60,28,56),(11,57,25,53),(12,58,26,54),(13,41,31,45),(14,42,32,46),(15,43,29,47),(16,44,30,48),(17,96,23,114),(18,93,24,115),(19,94,21,116),(20,95,22,113),(33,67,39,69),(34,68,40,70),(35,65,37,71),(36,66,38,72),(85,105,89,109),(86,106,90,110),(87,107,91,111),(88,108,92,112),(97,123,103,119),(98,124,104,120),(99,121,101,117),(100,122,102,118)], [(1,87,25,95),(2,86,26,94),(3,85,27,93),(4,88,28,96),(5,84,122,54),(6,83,123,53),(7,82,124,56),(8,81,121,55),(9,115,49,89),(10,114,50,92),(11,113,51,91),(12,116,52,90),(13,103,33,79),(14,102,34,78),(15,101,35,77),(16,104,36,80),(17,72,112,48),(18,71,109,47),(19,70,110,46),(20,69,111,45),(21,68,106,42),(22,67,107,41),(23,66,108,44),(24,65,105,43),(29,99,37,73),(30,98,38,76),(31,97,39,75),(32,100,40,74),(57,127,61,119),(58,126,62,118),(59,125,63,117),(60,128,64,120)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4R4S4T4U4V8A···8H
order12···24···44···444448···8
size11···12···24···488884···4

38 irreducible representations

dim111111122222244
type++++++-+-++-
imageC1C2C2C2C2C2C4Q8D4Q8D4SD16C4○D4C8⋊C22C8.C22
kernelC42.30Q8C22.4Q16C4×C4⋊C4C429C4C2×C4⋊C8C2×C4.Q8C4⋊C8C42C4⋊C4C4⋊C4C22×C4C2×C4C2×C4C22C22
# reps121112822228411

Matrix representation of C42.30Q8 in GL6(𝔽17)

100000
010000
0016000
0001600
000012
00001616
,
100000
010000
0001600
001000
0000160
0000016
,
010000
1600000
0013600
006400
0000139
000044
,
1010000
170000
00101600
0016700
0000160
000011

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,2,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,13,6,0,0,0,0,6,4,0,0,0,0,0,0,13,4,0,0,0,0,9,4],[10,1,0,0,0,0,1,7,0,0,0,0,0,0,10,16,0,0,0,0,16,7,0,0,0,0,0,0,16,1,0,0,0,0,0,1] >;

C42.30Q8 in GAP, Magma, Sage, TeX

C_4^2._{30}Q_8
% in TeX

G:=Group("C4^2.30Q8");
// GroupNames label

G:=SmallGroup(128,680);
// by ID

G=gap.SmallGroup(128,680);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,680,422,100,2019,1018,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b^2*c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽